Gray Creech, Public Affairs, NASA Dryden
Flight Research Center
It might not surprise you to find cereal
and crayons beneath your sofa cushions, especially if you are a parent with
young children.
But what if you found them in a jet
engine?
If you’re a NASA engineer, you might declare success in a test
of new aircraft engine health monitoring technology designed to provide early
warning of engine problems, including the destructive effect of volcanic ash.
NASA’s Aviation Safety Program is developing technology for improved sensors
to help spot changes in vibration, speed, temperature and emissions which are
symptomatic of engine glitches.
These advanced sensors could alert
ground crews to problems that can be eliminated with preventive maintenance
before becoming serious safety concerns.
Ultimately, the sensors could alert
pilots to the presence of destructive volcanic ash particles too small for the
eyes to see, giving more time for evasive action to prevent engine damage in
flight.
Letting
a jet engine suck up foreign objects usually is a no-no, but engineers at
NASA’s Dryden Flight Research Center
will bend the rules in an upcoming experiment with a U.S. Air Force C-17 cargo transport.
The cereal and crayons will leave a
colorful trail of grains and wax that the researchers can see and study to
gauge how well the sensors work.
Dryden engineers ran a similar test
using water in December 2011 to lay the groundwork for more complex
experiments. They operated the C-17 in normal use and simulated fault
conditions after outfitting one of its two Pratt & Whitney F117 turbofan engines – military versions of Pratt
& Whitney’s commercial airline PW-2000 turbofan engines – with the advanced
sensors.
The second test, in early 2013, will use
cereal and crayons to verify that the sensors can detect tiny bits of debris.
After that, engineers will conduct a third and final test with very hard,
glass-like particles that mimic volcanic ash. Because it is difficult and risky
to create problems intentionally on a jet engine in flight, the aircraft will
remain on the ground for both tests.
“The point of tossing cereal and crayons
into the engine is to trigger some small change for the sensors to detect,
without harming the engine,” said Dave Berger, a leader of the Vehicle
Integrated Propulsion (VIPR) test
series. “Once the sensitivity of the sensors is established, we will end with a
real-world scenario by introducing volcanic ash, which really can – and does –
tear up an engine.”
The final test with simulated ash will
assess how early the health monitoring sensors and their associated software
can detect and report a problem. The test will result in the engine’s failure.
“Being able to take an overhauled engine
and run it all the way to the end of its life through research experiments is a
unique opportunity,” said Berger.
NASA is partnering with the U.S. Air
Force and Pratt & Whitney on the
VIPR project. Since a volcanic eruption in Iceland disrupted air traffic
worldwide for weeks in 2009, there is renewed interest in being able to detect
volcanic ash in flight.
The Air Force has conducted extensive
tests on the effects of volcanic ash ingestion into jet engines, but sensors
that can detect the destructive effect of the ash were not available in those
tests. They also are not available on current production jet engines.
Based at Dryden, VIPR is funded by
NASA’s Aeronautics Research Mission Directorate , which manages the Aviation
Safety Program.
No comments:
Post a Comment