Tabletop
laser-like device can create multicolor beam of ultraviolet light, X-rays, and
the wavelengths in between
For the first time, researchers have
produced a coherent, laser-like, directed beam of light that simultaneously
streams ultraviolet light, X-rays and all wavelengths in between.
One of the few light sources to
successfully produce a coherent beam that includes X-rays, this new technology
is the first to do so using a setup that fits on a laboratory table.
An international team of researchers,
led by engineers from the National Science Foundation's Engineering Research
Center (ERC) for EUV Science and Technology, reports its findings in the June
8, 2012, issue of Science.
By focusing intense pulses of infrared
light--each just a few optical cycles in duration--into a high-pressure gas
cell, the researchers converted part of the original laser energy into a
coherent super-continuum of light that extends well into the X-ray region of
the spectrum.
The X-ray burst that emerges has much
shorter wavelengths than the original laser pulse, which will make it possible
to follow the tiniest, fastest physical processes in nature, including the
coupled dance of electrons and ions in molecules as they undergo chemical
reactions, or the flow of charges and spins in materials.
"This is the broadest spectral,
coherent-light source ever generated," says engineering and physics
professor Henry Kapteyn of JILA at the University of Colorado at Boulder, who
led the study with fellow JILA professor Margaret Murnane and research
scientist Tenio Popmintchev, in collaboration with researchers from the Vienna
University of Technology, Cornell University and the University of Salamanca.
"It definitely opens up the
possibility to probe the shortest space and time scales relevant to any process
in our natural world other than nuclear or fundamental particle
interactions," Kapteyn adds. The breakthrough builds upon earlier
discoveries from Murnane, Kapteyn and their colleagues to generate laser-like
beams of light across a broad spectrum of wavelengths.
The researchers use a technique called
high-harmonic generation (HHG). HHG was first discovered in the late 1980s,
when researchers focused a powerful, ultra-short laser beam into a spray of
gas. The researchers were surprised to find that the output beam contained a
small amount of many different wavelengths in the ultraviolet region of the
spectrum, as well as the original laser wavelength. The new ultraviolet
wavelengths were created as the gas atoms were ionized by the laser.
"Just as a violin or guitar string
will emit harmonics of its fundamental sound tone when plucked strongly, an
atom can also emit harmonics of light when plucked violently by a laser
pulse," adds Murnane. "The laser pulse first plucks electrons from
the atoms, before driving them back again where they can collide with the atoms
from which they came. Any excess energy is emitted as high-energy ultraviolet
photons."
Like many phenomena, when HHG was first
discovered, there was little science to explain it, and it was considered more a
curious phenomenon than a potentially useful light source. After years of work,
scientists eventually understood how very high harmonics were emitted. However,
there was one major challenge that most researchers gave up on--for most
wavelengths in the X-ray region, the output HHG beams were extremely weak.
Murnane, Kapteyn and their students
realized that there might be a chance to overcome that challenge and turn HHG
into a useful X-ray light source--the tabletop-scale X-ray laser that has been
a goal for laser science since shortly after the laser was first demonstrated
in 1960.
"This was not an easy task,"
says Murnane. "Unlike a laser--which gets more intense as more energy is
pumped into the system--in HHG, if the laser hits the atoms too hard, too many
electrons are liberated from the gas atoms, and those electrons cause the laser
light to speed up. If the speed of the laser and X-rays do not match, there is
no way to combine the many X-ray waves together to create a bright output beam,
since the X-ray waves from different gas atoms will interfere
destructively."
Popmintchev and JILA graduate student
Ming-Chang Chen worked out conditions that enable X-ray waves from many atoms
in the gas to interfere constructively. The key was to use a relatively long-wavelength,
mid-infrared laser and a high pressure gas cell that also guides the laser
light. The resulting bright, X-ray beams maintain the coherent, directed beam
qualities of the laser that drives the process.
The HHG process is effective only when
the atoms are hit "hard and fast" by the laser pulses, with durations
nearing 10-14 seconds--a fundamental limit representing just a few oscillations
of the electromagnetic fields. Murnane and Kapteyn pioneered the technology for
generating such light pulses in the 1990s, and used those lasers to develop and
utilize HHG-based light sources in the extreme-ultraviolet (EUV) region of the
spectrum in the 2000s. However, while researchers were using those lasers and
the HHG technique to measure ever-shorter duration light pulses, they were
stymied in how to make coherent light at shorter wavelengths in the more
penetrating X-ray region of the spectrum.
The new paper in Science, under lead
author and senior research associate Popmintchev, demonstrates that breakthrough,
showing that the understanding of the HHG process the researchers developed is
broadly valid.
"We would have never found this if
we hadn't sat down and thought about what happens overall during HHG, when we
change the wavelength of the laser driving it, what parameters have to be
changed to make it work," added Kapteyn. "The amazing thing is that
the physics seem to be panning out even over a very broad range of parameters.
Usually in science you find a scaling rule that prevents you from making a
dramatic jump, but in this case, we were able to generate 1.6 keV - each X-ray
photon was generated from more than 5,000 infrared photons."
When the researchers first started to
work with ultrafast, mid-infrared lasers just a few years ago, they actually
made a step backwards and generated bright extreme-ultraviolet light of longer
wavelengths than they used to achieve in the lab.
"However, we discovered a new
regime that helped us to realize, just on paper, that we could make this giant
step forward towards much shorter electromagnetic wavelengths and generate
bright, laser-like, soft and hard X-rays," adds Popmintchev. "What
the experiments were suggesting back then looked too good to be true! It seemed
that Mother Nature has combined together, in the most simple and beautiful way,
all the microscopic and macroscopic physics. Now, we are already at X-ray
wavelengths as short as roughly 7.7 angstroms, and we do not know the
limit."
To truly control the beam of photons,
the researchers needed to understand the HHG process at the atomic level and
how X-rays emitted from individual atoms combine to form a coherent beam of
light.
That understanding combines microscopic
and macroscopic models of the HHG process with the fact that those interactions
occur at very high intensity in a dynamically changing medium. The development
of such a conceptual understanding took the last decade to develop.
The result was the realization that
there is no fundamental limit to the energy of the photons that can be
generated using the HHG process. To obtain higher-energy photons, the system
paradoxically begins with laser light using lower energy photons--specifically,
mid-infrared lasers.
The JILA researchers demonstrated the
validity of that principle in their labs in Colorado, but to achieve their
breakthrough, the researchers traveled to Vienna with their beam-generating
setup. There, they used a laser developed by co-author Andrius Baltuška and
colleagues at the Vienna University of Technology--the world's most-intense ultrashort-pulse
laser operating in the mid-infrared, with a wavelength of four microns.
"Thirty years ago, people were
saying we could make a coherent X-ray source, but it would have to be an X-ray
laser, and we'd need an atomic bomb as the energy source to pump it," said
Deborah Jackson, the program officer who oversees the ERC's grant. "Now,
we have these guys who understand the science fundamentals well enough to
introduce new tricks for efficiently extracting energetic photons, pulling them
out at X-ray wavelengths ... and it's all done on a table-top!"
In addition to achieving the high energy,
the increasingly broad spectrum opens a range of new applications.
"In an experiment using such a
source, one energy region from the beam will correspond with one element,
another with another element, and so on to simultaneously look at atoms across
entire molecules, and that will allow us to see how charge moves from one part
of a molecule to another as a chemical reaction is happening," adds
Kapteyn. "It'll take us awhile to learn how to use this, but it's very
exciting."
-NSF-
No comments:
Post a Comment