Berkeley Lab and UC Berkeley
Researchers Record First Direct Observations of Quantum Effects in an
Optomechanical System
A long-time staple of science fiction is
the tractor beam, a technology in which light is used to move massive objects –
recall the tractor beam in the movie Star Wars that captured the Millennium
Falcon and pulled it into the Death Star. While tractor beams of this sort
remain science fiction, beams of light today are being used to mechanically
manipulate atoms or tiny glass beads, with rapid progress being made to control
increasingly larger objects. Those who see major roles for optomechanical
systems in a host of future technologies will take heart in the latest results
from a first-of-its-kind experiment.
Scientists with the U.S. Department of
Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the
University of California (UC) Berkeley, using a unique optical trapping system
that provides ensembles of ultracold atoms, have recorded the first direct
observations of distinctly quantum optical effects – amplification and
squeezing – in an optomechanical system. Their findings point the way toward
low-power quantum optical devices and enhanced detection of gravitational waves
among other possibilities.
“We’ve shown for the first time that the
quantum fluctuations in a light field are responsible for driving the motions
of objects much larger than an electron and could in principle drive the motion
of really large objects,” says Daniel Brooks, a scientist with Berkeley Lab’s
Materials Sciences Division and UC Berkeley’s Physics Department.
Brooks, a member of Dan Stamper-Kurn’s
research group, is the corresponding author of a paper in the journal Nature
describing this research. The paper is titled “Nonclassical light generated by
quantum-noise-driven cavity optomechanics.” Co-authors were Thierry Botter,
Sydney Schreppler, Thomas Purdy, Nathan Brahms and Stamper-Kurn.
Light will build-up inside of an optical
cavity at specific resonant frequencies, similar to how a held-down guitar
string only vibrates to produce specific tones. Positioning a mechanical
resonator inside the cavity changes the resonance frequency for light passing
through, much as sliding one’s fingers up and down a guitar string changes its
vibrational tones. Meanwhile, as light passes through the optical cavity, it
acts like a tiny tractor beam, pushing and pulling on the mechanical resonator.
If an optical cavity is of ultrahigh
quality and the mechanical resonator element within is atomic-sized and chilled
to nearly absolute zero, the resulting cavity optomechanical system can be used
to detect even the slightest mechanical motion. Likewise, even the tiniest
fluctuations in the light/vacuum can cause the atoms to wiggle. Changes to the
light can provide control over that atomic motion. This not only opens the door
to fundamental studies of quantum mechanics that could tell us more about the
“classical” world we humans inhabit, but also to quantum information
processing, ultrasensitive force sensors, and other technologies that might
seem like science fiction today.
“There have been proposals to use
optomechanical devices as transducers, for example coupling motion to both
microwaves and optical frequency light, where one could convert photons from
one frequency range to the other,” Brooks says. “There have also been proposals
for slowing or storing light in the mechanical degrees of freedom, the equivalent
of electromagnetically induced transparency or EIT, where a photon is stored
within the internal degrees of freedom.”
Already cavity optomechanics has led to
applications such as the cooling of objects to their motional ground state, and
detections of force and motion on the attometer scale. However, in studying
interactions between light and mechanical motion, it has been a major challenge
to distinguish those effects that are distinctly quantum from those that are
classical – a distinction critical to the future exploitation of optomechanics.
Brooks, Stamper-Kurn and their
colleagues were able to meet the challenge with their microfabricated atom-chip
system which provides a magnetic trap for capturing a gas made up of thousands
of ultracold atoms. This ensemble of ultracold atoms is then transferred into
an optical cavity (Fabry-Pferot) where it is trapped in a one-dimensional
optical lattice formed by near-infrared (850 nanometer wavelength) light that
resonates with the cavity. A second beam of light is used for the pump/probe.
“Integrating trapped ensembles of
ultracold atoms and high-finesse cavities with an atom chip allowed us to study
and control the classical and quantum interactions between photons and the
internal/external degrees of freedom of the atom ensemble,” Brooks says. “In
contrast to typical solid-state mechanical systems, our optically levitated
ensemble of ultracold atoms is isolated from its environment, causing its
motion to be driven predominantly by quantum radiation-pressure fluctuations.”
The Berkeley research team first applied
classical light modulation to a low-powered pump/probe beam (36 picoWatts)
entering their optical cavity to demonstrate that their system behaves as a
high-gain parametric optomechanical amplifier. They then extinguished the classical
drive and mapped the response to the fluctuations of the vacuum. This enabled
them to observe light being squeezed by its interaction with the vibrating
ensemble and the atomic motion driven by the light’s quantum fluctuations.
Amplification and this squeezing interaction, which is called “ponderomotive
force,” have been long-sought goals of optomechanics research.
“Parametric amplification typically
requires a lot of power in the optical pump but the small mass of our ensemble
required very few photons to turn the interactions on/off,” Brooks says. “The
ponderomotive squeezing we saw, while narrow in frequency, was a natural
consequence of having radiation-pressure shot noise dominate in our system.”
Since squeezing light improves the
sensitivity of gravitational wave detectors, the ponderomotive squeezing
effects observed by Brooks, Stamper-Kern and their colleagues could play a role
in future detectors. The idea behind gravitational wave detection is that a
ripple in the local curvature of spacetime caused by a passing gravitational
wave will modify the resonant frequency of an optical cavity which, in turn,
will alter the cavity’s optical signal.
“Currently, squeezing light over a wide
range of frequencies is desirable as scientists search for the first detection
of a gravitational wave,” Brooks explains. “Ponderomotive squeezing, should be
valuable later when specific signals want to be studied in detail by improving
the signal-to-noise ratio in the specific frequency range of interest.”
The results of this study differ
significantly from standard linear model predictions. This suggests that a
nonlinear optomechanical theory is required to account for the Berkeley team’s
observations that optomechanical interactions generate non-classical light. Stamper-Kern’s
research group is now considering further experiments involving two ensembles
of ultracold atoms inside the optical cavity.
“The squeezing signal we observe is
quite small when we detect the suppression of quantum fluctuations outside the cavity,
yet the suppression of these fluctuations should be very large inside the
cavity,” Brooks says. “With a two ensemble configuration, one ensemble would be
responsible for the optomechanical interaction to squeeze the
radiation-pressure fluctuations and the second ensemble would be studied to
measure the squeezing inside the cavity.”
This research was funded by the Air
Force Office of Scientific Research and the National Science Foundation.
#
# #
Lawrence Berkeley National Laboratory
(Berkeley Lab) addresses the world’s most urgent scientific challenges by
advancing sustainable energy, protecting human health, creating new materials,
and revealing the origin and fate of the universe. Founded in 1931, Berkeley
Lab’s scientific expertise has been recognized with 13 Nobel prizes. The
University of California manages Berkeley Lab for the U.S. Department of
Energy’s Office of Science. For more, visit www.lbl.gov.
No comments:
Post a Comment